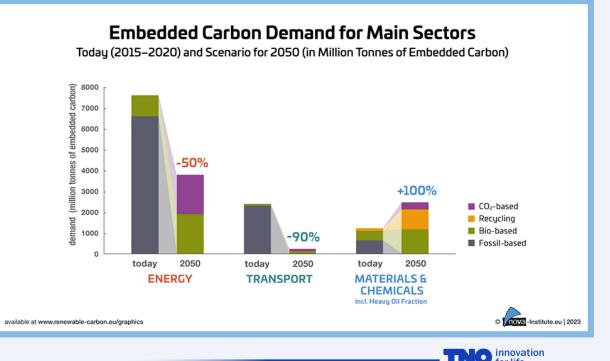
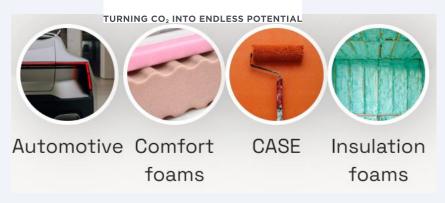

CCU for coatings & adhesives

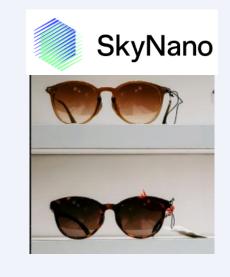
All solutions are needed, but all solutions are not equal!

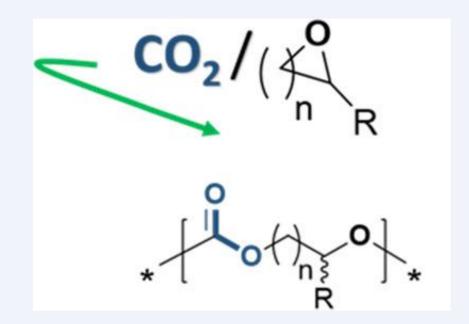


The Holy Grail for renewable carbon feedstock

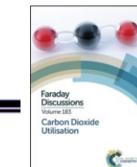
While the energy sector can decarbonise extensively, materials is inherently a different story


Just recycling & biobased will not fulfil the demand for Carbon feedstock for our 2050 climate goals


CO₂ based products are today already in the market



Successful concepts employ CO₂ as a building block: max 20-30% CO2



A WALK IN THE PARK COMPARED TO CO₂ ACTIVATION

The Twelve Principles of CO₂ CHEMISTRY †

Martyn Poliakoff,*^a Walter Leitner *^{bc} and Emilia S. Streng ^{ab}

Volume 183, 2015

From the journal:

Faraday Discussions

- C Catalysis is crucial
- O Origin of the CO₂?
- 2 Tomorrow's world may be different
- C Cleaner than existing process?
- H High volume or high value products?
- E E-factor must be low
- M Maximize integration
- I Innovative process technology
- S Sustainability is essential
 - Thermodynamics cannot be beaten
- R Renewable (& reasonable) energy input
 - Your enthusiasm is not enough

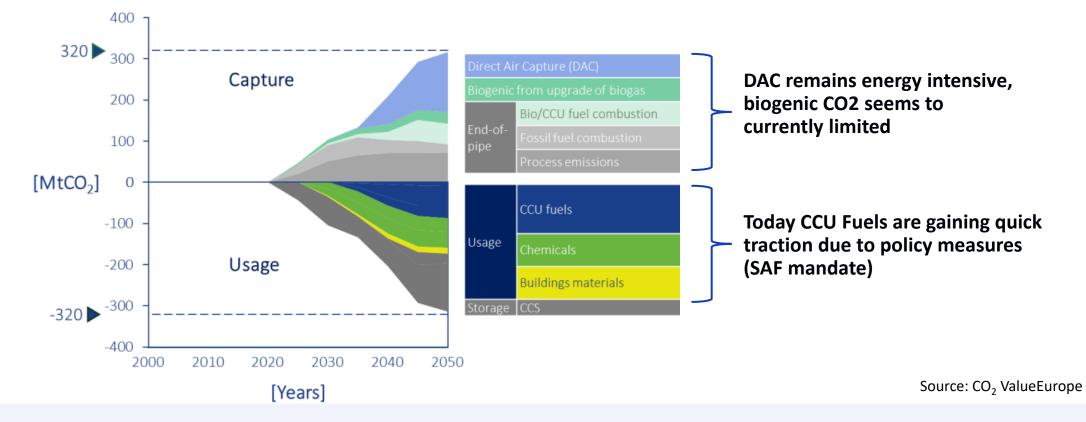
CO₂ utilisation technologies today focus on C1/ C2 commodity molecules

Pathway	🥜 TRL	Lange Commercial Viability	📈 Scalability Potential
<mark>Methanol</mark> from CO₂ + H₂	8–9	High (CRI, Methanex)	High
Formic acid (electrochemical)	5–6	Low (lab-scale mostly)	Medium
Dimethyl Ether (DME)	7–8	Growing (Oberon)	Medium–High
Carbonate mineralization	8–9	Growing (CarbonCure)	Very High
Polyurethanes from CO ₂	7–8	Active (Covestro, FENC etc)	Medium
Bioethanol via CO₂ fermentation	8	LanzaTech, others	High
Graphene from CO ₂	4–6	Early pilots	Medium

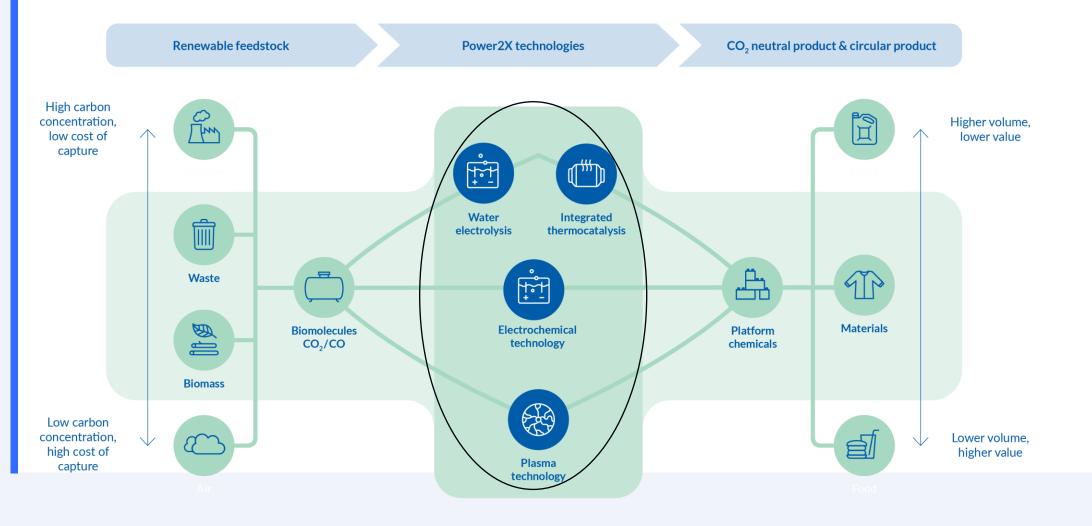
CO₂ based Methanol is a Game Changer

- Entire chemical value-chains are based on Methanol
- Methanol is an excellent building block for both fuels & chemicals

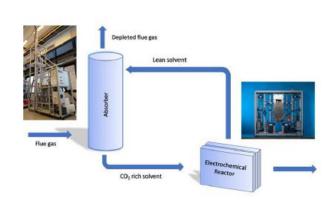
Carbon Dioxide	→	Green Methanol	→	Derivatives	•	Products
+				Formaldehyde		UF / PF Resins
Hydrogen				Acetic Acid	\supset	Polyacetals
				MMA	\supset	MDI
				МТВЕ	\supset	VAM
				DME	\supset	Acetate Esters
				and others	\supset	Acetic Anhydride
						РТА
						Olefins


Ways to make Methanol from CO₂

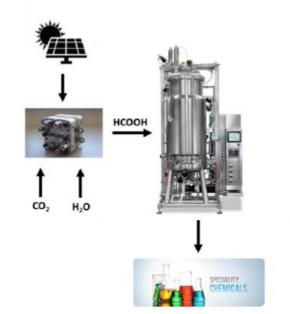
Method	Inputs	Pros	Cons
Thermochemical Hydrogenation	$CO_2 + H_2$	Industrial-scale ready	Needs green H₂
RWGS + CO Hydrogenation	$CO_2 + H_2$	Flexible CO:H₂ ratio control	More complex
Electrochemical	CO₂ + H₂O + e ⁻	Renewable electricity use	Low efficiency/selectivity



Costs & availability of captured CO₂ will drive the successful implementation & scalability



The roadmap to a carbon-neutral materials world



Disruptive electrochemical technologies are on track to be commercial by 2035

Capture-integrated CO2 conversion to fuels and plastic intermediates

Fermentation integrated electrolysis to high-value ingredients and/or Feed & Food ingredients (proteins)

PERFORM pilot for electrochemical biobased chemicals production (1kg/ day scale)

Join TNO's market consultation on CCU for the CASE market

Get-in-touch with us!

We are currently evaluating the start of several Shared Research Programmes in the field of electrochemical conversion of CO₂ and of bio-based feedstocks

Martijn de Graaff Program Director Industrial Electrification

+31 6 222 608 71 martijn.degraaff@tno.nl **Monalisa Goswami** Business Development Power-2-Chemicals

+31 6 251 044 52 monalisa.goswami@tno.nl

innovation for life